Author: Kritika Bhardwaj
“The world still needs a giant leap on climate ambition”, said António Guterres, UN Secretary-General, at the 27th United Nations Climate Change Conference (COP27). He insisted, “The red line we must not cross is the line that takes our planet over the 1.5 degree temperature limit. ” This increase in temperature could exacerbate many catastrophes worldwide, such as energy and food security, more extreme weather events, and rising sea levels and therefore need immediate attention to mitigate the effect.
UN Climate Change Executive Secretary Simon Stiell attending COP27, also added, “The less we mitigate, the more we have to adapt. So, investing in mitigation is a way of reducing the need to invest on adaptation and resilience. That means tabling stronger national climate action plans — and doing so now.” Therefore, we need to address climate change by taking drastic measures to reduce greenhouse gas emissions and moving toward a “net zero” carbon economy.
A net zero economy is one where the total greenhouse gas emissions produced equal the total greenhouse gas emissions removed from the atmosphere. This can be accomplished by reducing emissions and increasing carbon sequestration by biomass production. Biomass production is vital to increasing carbon sequestration, as it takes carbon dioxide out of the atmosphere and stores it in plant matter.
The UK’s Climate Change Committee has released its report on biomass strategy, calling for a “step change” in how the country produces and uses biomass energy. The report says that biomass has the potential to make a “significant contribution” to the UK’s renewable energy and is an integral part of the global carbon cycle. Therefore, increasing biomass production will play a vital role in the net zero carbon economy as the plants grow and absorb carbon dioxide, thus making a carbon-neutral source. There are several ways to increase biomass production. One way is by planting more trees and plants, which will help absorb carbon dioxide from the atmosphere and convert it into biomass. Another way is to use agricultural waste products, such as straw, to create biomass. This can help reduce the amount of waste produced on farms.
Biomass can be used to generate electricity through direct combustion, gasification, pyrolysis, or anaerobic digestion. It can also be used to produce transportation fuels, such as ethanol and biodiesel. The report, titled ‘Bioenergy for a Sustainable Future’, says that bioenergy is the only renewable energy source that can be used for all three energy sectors: power, heat, and transport. This could play a “significant role” in achieving the goals of the Paris Agreement on climate change and could help achieve net zero emissions by 2050 or carbon-negative energy production.
Carbon-negative energy products result in net negative emissions of carbon dioxide. In other words, the removal of carbon dioxide from the atmosphere. There are a few different ways to achieve this, but one of the most promising ways is using carbon capture and storage (CCS) technology. This involves trapping carbon dioxide emissions from power plants, storing them underground and preventing carbon dioxide from entering the atmosphere. Several CCS projects are underway worldwide, and the technology is constantly improving. Another way to achieve carbon-negative energy is through biofuels made from plant material that can replace fossil fuels.
As we look into the future, it is evident that we need to minimise our greenhouse gas emissions by reducing the demand for non-renewable resources and maximising yield for a clean, sustainable energy approach. More biomass production can help us meet our need for net zero greenhouse gas emissions by 2050 and beyond.